% photopath = './photo/'; % snames=dir([photopath '*' '.jpg'])%get all filenames in photopath % l = length(snames) % % %get x_ data % x_train = []; % x_test = []; % % for i=1:4000 % iname=[photopath snames(i).name] %the path of jpg % x = imread(iname); % the shape of x is (28,28) % x = reshape(x,784,1); %reshape x to (784,1) % x_train = [x_train,x]; % end % % for k=4001:5000 % kname=[photopath snames(k).name]; %the path of jpg % x = imread(kname); %the shape of x is (28,28) % x = reshape(x,784,1); %reshape x to (784,1) % x_test = [x_test,x]; % end
x_train=[];
for i=1:4000 x=im2double(imread(strcat(num2str(i),'.jpg'))); x=reshape(x,784,1); x_train=[x_train,x]; end x_test =[];
for k=4001:5000 x=im2double(imread(strcat(num2str(k),'.jpg'))); x=reshape(x,784,1); x_test=[x_test,x]; end data=xlsread('label.xlsx'); y_train=data(:,1:4000); y_test = data(:,4001:5000);
step=ipout('迭代步数:'); a=input('学习因子:'); in = 784; %输入神经元个数 hid = input('隐藏层神经元个数:');%隐藏层神经元个数 out = 10; %输出层神经元个数 o =1;
w = randn(out,hid); b = randn(out,1); w_h =randn(hid,in); b_h = randn(hid,1);
for i=0:step %打乱训练样本 r=randperm(4000); x_train = x_train(:,r); y_train = y_train(:,r); %mini_batch for jj=0:399 %取batch为10 更新取10次的平均值 for j=jj*10+1:(jj+1)*10 x = x_train(:,j); y = y_train(:,j);
hid_put = layerout(w_h,b_h,x); out_put = layerout(w,b,hid_put); %更新公式的实现 o_update = (y-out_put).*out_put.*(1-out_put); h_update = ((w')*o_update).*hid_put.*(1-hid_put); if j==1 outw_update = (double(a)/10)*(o_update*(hid_put')); outb_update = (double(a)/10)*o_update; hidw_update = (double(a)/10)*(h_update*(x')); hidb_update = (double(a)/10)*h_update; end if j~=1 outw_update = outw_update + (double(a)/10)*(o_update*(hid_put')); outb_update = outb_update -(double(a)/10)*o_update; hidw_update = hidw_update + (double(a)/10)*(h_update*(x')); hidb_update = hidb_update -(double(a)/10)*h_update; end end w = w + outw_update; b = b+ outb_update; w_h = w_h +hidw_update; b_h =b_h +hidb_update; end end end
test = zeros(10,1000); for k=1:1000 x = x_test(:,k);
hid = layerout(w_h,b_h,x); test(:,k)=layerout(w,b,hid); %正确率表示方式一:输出正确个数 [t,t_index]=max(test); [y,y_index]=max(y_test); sum = 0; for p=1:length(t_index) if t_index(p)==y_index(p) sum =sum+1; end end end
fprintf('正确率: %d/1000\n',sum); %正确率表示方式二:用plotconfusion函数 plotconfusion(y_test,test); end